Abstract:
En esta tesis investigamos cómo comprenden el número real estudiantes de secundaria y de universidad. Situamos nuestro objeto de estudio analizando histórica y epistemológicamente la teoría matemática en torno al número real y el infinito matemático. Abordamos perspectivas cognitivas y educativas para dimensionar desafíos y sentidos que intervienen en las distintas concepciones estudiantiles.
Trescientos siete estudiantes de los últimos años de secundaria y universitarios/as ingresantes o avanzados/as de carreras con distinta especificidad de estudios en Matemática respondieron a un cuestionario que indaga sobre: concepción de número y número irracional, la densidad, el orden de los números reales, el infinito en este entorno y la recta como representación de éstos.
La integración de métodos cualitativos y estadísticos multivariados posibilitó construir un repertorio de respuestas, analizar sus relaciones e identificar siete modos de comprensión del número real, que interpretamos según un arco de amplitud y profundidad conceptual. Identificamos seis hitos que hacen notable la ampliación y profundización entre modos de comprensión. Éstos son, la incorporación de: la recta como representación de los números; la problemática de lo finito y lo discreto; la densidad potencialmente infinita y la comparación por inclusión; las magnitudes con discretitud y finitud intencional; el orden y la densidad potencial identificada con la continuidad; el infinito actual-cardinal y la completitud continuidad.
Mostramos una progresión en las concepciones numéricas, desde la centralidad de los enteros como modelos de números, pasando por los racionales como decimales, a los reales como unión de racionales e irracionales.
Si bien un mayor nivel de estudio matemático se asocia a una mayor amplitud y profundidad conceptual, en cada nivel de estudio se presentan una variedad de modos de respuesta. La excepción es el grupo de estudiantes avanzados/as de Matemática, que concentra los modos más cercanos a una visión matemática.
Concluimos que conceptualizar el número real requiere de complejos procesos representacionales, comunicativos y semióticos en contextos educativos que propicien un alto grado de reflexión y explicitación matemáticas.