Forecasting virus outbreaks with social media data via neural ordinary differential equations

Mostrar el registro sencillo del ítem

dc.creator Núñez, Matías
dc.creator Barreiro, Nadia L.
dc.creator Barrio, Rafael A.
dc.creator Rackauckas, Christopher
dc.date 2021
dc.date.accessioned 2021-03-30T16:07:10Z
dc.date.available 2021-03-30T16:07:10Z
dc.identifier http://rdi.uncoma.edu.ar/handle/uncomaid/16169
dc.description.abstract In the midst of the covid-19 pandemic, social media data collected in real time has the potential of being an early indicator of a new epidemic wave. This possibility is explored here by using a neural ordinary differential equation (neural ODE) that is trained to predict virus outbreaks for a geographic region. It learns from multivariate time series of signals obtained from a novel set of massive online surveys about COVID-19 symptoms. Once trained, the neural ODE is able to capture the dynamics of the interlinked local signals and accurately predict the number of new infections up to two months in advance. Moreover, it can estimate the future effects of changes in the number of infected at a given time, which can be associated with the flow of people entering or leaving a given region or, for instance, with a local vaccination campaign. This work gives compelling preliminary evidence for the predictive power of widely distributed social media surveys for public health application es_ES
dc.format application/pdf es_ES
dc.language eng es_ES
dc.publisher medRxiv es_ES
dc.publisher Cold Spring Harbor Laboratory es_ES
dc.publisher Universidad de Yale es_ES
dc.publisher BMJ es_ES
dc.relation.uri https://www.medrxiv.org/content/10.1101/2021.01.27.21250642v1 es_ES
dc.rights Atribución-NoComercial-CompartirIgual 2.5 Argentina es_ES
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ es_ES
dc.source MedRxiv the preprint server for health sciences es_ES
dc.subject Redes sociales es_ES
dc.subject Datos recopilados es_ES
dc.subject Ecuación diferencial ordinaria neural es_ES
dc.subject Brotes de virus es_ES
dc.subject COVID-19 es_ES
dc.subject.other Ciencias Biomédicas es_ES
dc.title Forecasting virus outbreaks with social media data via neural ordinary differential equations es_ES
dc.type Articulo es
dc.type article eu
dc.type acceptedVersion eu
dc.description.fil Fil: Núñez, Matías. Universidad Nacional del Comahue. INIBIOMA. CNEA. CONICET; Argentina. es_ES
dc.cole Artículos es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 2.5 Argentina Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 2.5 Argentina