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Abstract
Arbuscular mycorrhizal and dark septate fungi are common plant symbionts, 
but their role in promoting host plant fitness depends on environmental vari-
ables. Particularly in wetland plants, these associations are less understood. 
We analysed the role of arbuscular mycorrhizal fungi (AMF) and dark septate 
fungi (DSF) in the roots of Potentilla anserina (Rosaceae), an invasive species of 
Patagonia, widely distributed in wetlands. We tested three hypotheses: that fungi 
colonization varies according to soil moisture and nutrient content (nitrogen and 
phosphorus), that they enhance P. anserina nutrient content, and benefit plant 
growth. We measured the percentage of colonization in plants from five wet-
lands across a moisture gradient with different nutrient content, and performed a 
growth experiment with soil from these wetlands to evaluate changes in mycor-
rhizal and endophytic fungal colonization, aerial nutrient content and biomass 
production. In the field, root colonization by AMF was high in all sites (~90%), 
whereas DSF was less abundant (~20%), positively related to soil organic matter, 
and negatively related to soil phosphorus. In the experiment, DSF colonization 
was inversely related to increasing tissue N and P content. Potentilla anserina 
grew similarly in all the treatments, but biomass was positively related to DSF 
colonization. Our results provide evidence that DSF, rather than AMF, confer to 
this invasive species the ability to grow in soils with different water and nutrient 
content and may help to explain the wide distribution of this alien species in 
Patagonian wetlands.

K E Y W O R D S
arbuscular mycorrhizal and dark septate fungi, invasive plant, Patagonian wetlands, Potentilla 
anserina, soil nutrients

INTRODUCTION

Almost every plant form symbiotic associations, depending on the plant 
species involved. The most common mycorrhizal association is between 
plant roots and arbuscular mycorrhizal fungi (AMF), belonging to the divi-
sion Glomeromycota, present in more than 80% of plant species, both in 
terrestrial and aquatic environments (Brundrett & Tedersoo, 2018; Cuassolo 
et al., 2012; Helgason & Fitter, 2009; Hu et al., 2020; Smith & Read, 2010; 
Wang et al., 2018). Although the percentage of colonization in aquatic envi-
ronments may be low (<25%; Marins & Carrenho, 2017; Wang et al., 2018), 
in wetlands the intensity of colonization depends on the duration of the 
hydroperiod (Dolinar et al., 2016; Fusconi & Mucciarelli, 2018; Gaberščik 
et al., 2017) and oxygen availability (Fougnies et al., 2007; Miller, 2000).

The mycorrhizal interaction plays an important role in plant competition 
for nutrients, especially phosphorus (P; Javaid, 2009; Khan & Belik, 1995; 
Mei et al.,  2019; Smith & Read,  2010), but also nitrogen (N; Johansen 
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et al., 1996; Nouri et al., 2014), promoting plant productivity and changes 
in community diversity and structure (Collins & Foster,  2009; Guo & 
Gong,  2014). However, mycorrhizal associations do not always promote 
plant growth. Abiotic factors in the rhizosphere (such as soil moisture and 
nutrient content) and biotic factors (microbial community composition) me-
diate mycorrhizal functioning determining the mutualistic or parasitic in-
teraction (Johnson et al., 2015). Root colonization usually decreases with 
soil moisture (Lekberg & Koide, 2008), with an optimum of 15%–20% of 
water content in sediments (Deepika & Kothamasi, 2015). Also, soil nutri-
ent content plays a determinant role in the type of association (Hoeksema 
et al., 2010; Johnson et al., 2015; Nouri et al., 2014). Mutualistic associa-
tions could be expected when there is a deficit of inorganic nutrient in soil 
(Cornwell et al., 2001; Hoeksema et al., 2010; Saif, 1983; Treseder, 2013), 
while in nutrient-rich soils, the AMF confer little advantage to the plants; in 
consequence, depending on the plant species, the host plant may reduce 
root colonization (Daleo et al., 2008).

The diversity of associated fungi is greater than previously assumed, 
extending to Mucoromycotina fungi (Hoysted et al.,  2023). Another 
group of fungi that colonizes roots is known as dark septate fungi (DSF), 
a miscellaneous group of anamorphic Ascomycetes (Jumpponen, 2001; 
Jumpponen & Trappe,  1998; Menkis et al.,  2004). The functions and 
taxonomic affinities of this group began to be understood in the last 
decade (Mandyam & Jumpponen, 2014; Newsham, 2011). They are one 
of the most abundant and widespread groups of plant root colonists 
(Della Mónica et al.,  2015) and often contribute to enhancing photo-
synthetic efficiency, promoting nutrient and water use, and conferring 
tolerance to abiotic and biotic stress (Barrow et al.,  2008; Bueno de 
Mesquita et al., 2018; Mandyam & Jumpponen, 2014; Wang et al., 2011). 
A synergistic relationship was hypothesized between DSF-AMF and P 
availability and uptake in plants, in which DSF increased the P pool in 
the rhizosphere while AMF transferred P to the host plant (Della Mónica 
et al., 2015). Also, DSF was suggested to be related to nitrogen mineral-
ization (Bueno de Mesquita et al., 2018). Nonetheless, as for AMF, DSF 
associations can either stimulate or reduce host plant growth (Caldwell 
et al.,  2000). Also, the interactions between DSF and AMF were re-
ported as positive (Ranelli et al., 2015; Thangavelu & Raji, 2016), neg-
ative (Bueno de Mesquita et al.,  2018), and neutral (Huo et al.,  2021; 
Seerangan & Thangavelu, 2014). In a recent review of microbial interac-
tions in soils, Albornoz et al. (2022) found that competition or facilitation 
among microbial groups largely depends on their mechanisms for car-
bon and nutrient acquisition.

The role of AMF in invasive plant colonization has been recently ad-
dressed (Callaway et al., 2001; Policelli et al., 2019; Simberloff, 2006). In 
some cases, the invasive alien species only invade after the introduction 
of their symbionts (Richardson et al.,  2000). In salt-marshes, the inva-
sive Spartina alternifolia showed a high infection rate of AMF which pro-
moted the invasion success, while it is non-mycorrhizal in its native habitat 
(Eberl, 2011). In North-west Patagonia, invasive species amount to 15.35% 
in terrestrial environments (Speziale & Ezcurra, 2011), while in temporary 
wetlands may reach up to 50% (Cuassolo & Diaz-Villanueva, 2019). Among 
the numerous exotic species in Patagonian aquatic environments, the pe-
rennial hemicriptophyte Potentilla anserina, originally native to the Northern 
Hemisphere, is widely distributed (Correa, 1984; Ezcurra & Brion, 2005), 
both in forest and steppe meadows and also in urban wetlands (Cuas-
solo & Diaz-Villanueva, 2019). A recent study found that this species was 
positively associated with temporary wetlands and with the presence of 
cattle (Cuassolo & Diaz-Villanueva, 2022). In one of these wetlands, the 
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presence of AMF in P. anserina roots was higher than in two native mac-
rophytes (Eleocharis pachycarpa and Carex aematorrhyncha), although 
the native species were more colonized by DSF than the invasive species 
(Cuassolo et al., 2012).

This study aimed to analyse the colonization of AMF and DSF in the 
roots of P. anserina grown in soil from temporary wetlands along a mois-
ture gradient and with different nutrient content (nitrogen and phosphorus). 
In Patagonia, we found this moisture gradient because there is a steep 
decline in annual precipitations from west to east, which determines the 
water tables in wetlands (Paruelo et al., 1998). So, our first hypothesis (H1) 
was that the variation in soil moisture and nutrient content influences the 
occurrence and frequency of colonization of roots by AMF and DSF. Also, 
we experimentally assessed the relation between soil nutrient content, 
root colonization, and plant nutrient content (nitrogen and phosphorus) 
and hypothesized (H2) that the frequency of colonization of AMF and DSF 
enhances plant nutrient acquisition. In this experiment, we also measure 
plant growth (measured as biomass) and hypothesized (H3) that the inva-
sive plants growth depends on the frequency of colonization by AMF and 
DSF.

METHODS

Study sites

This study was performed in the Nahuel Huapi National Park (NHHP), 
North-West Patagonia, Argentina (40°20′ S–41°35′ S; 71°02′ W–71°56′ W, 
750 m a.s.l). The climate of the region is cold and temperate, with rainfalls 
and snow concentrated from April to September (autumn and winter) and 
ranging from about 2000 mm per year in the west to 200 mm per year in 
the east (Paruelo et al., 1998). This precipitation gradient generates a con-
comitant gradient of vegetation, from temperate forests to shrublands and 
steppe (Dimitri,  1977; Ezcurra & Brion,  2005). The soils are of volcanic 
origin (andisols) with a low degree of development and high capacity to sta-
bilize organic matter, store water, buffer pH and retain phosphorus (Maz-
zarino et al., 1998; Satti et al., 2003).

We chose five temporary wetlands in a 34 km West–East-transect which 
represent a gradient of precipitations. The wetlands differed in the duration 
of the water presence (hydroperiod) from 4 months in dry years at the East 
of the transect to 8 months in wet years at the West of the transect (Table 1; 
Cuassolo & Diaz-Villanueva, 2019). The dry season begins in late spring 
and last until the beginning of autumn.

Field study

For the field study, the percentage of colonization by AMF and DSF in 
P. anserina's roots was analysed. Twenty plants were collected in the same 
growing season, when the wetlands are dry or drying (November 2018) 
from each of the five wetlands. They were stored in hermetic plastic bags 
and carried to the laboratory. Random pools of roots were preserved in eth-
anol 50% to quantify AMF and DSF colonization. From each wetland, we 
collected five samples of surface soil (5–10 cm depth, ~50 g) with a shovel, 
from sites of P. anserina patches, stored them in hermetic plastic bags, and 
immediately carried them to the laboratory for organic matter, water and 
nutrient content determinations.
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Experimental design

The greenhouse experiment was performed to quantify changes in the 
colonization of AMF and DSF and changes in plant nutrient content and 
growth, after a season of growth (4 months of growing) in the different soils 
studied. The growth of P. anserina in the different soils was measured as 
aerial biomass production at the end of the experiment. We used soil from 
the five sites described above. As a control treatment, we used an inorganic 
substrate, agricultural pearl (gravel; Lombriquen(MR)), to avoid nutrient and 
organic matter supply. Soil samples from the five wetlands were collected 
(~10 kg) near the sites where P. anserina was observed and carried to the 
greenhouse. The samples were dried at room temperature for a week and 
then homogenized with a sieve of 4 mm. Small plants of P. anserina were 
collected from one of the wetlands (Fantasma, where the abundance of 
P. anserina is the highest) and carried to the laboratory. All plants were 
chosen from the same wetland to presume similar initial fungal colonization 
and be able to test the response to environmental variables. Aerial parts of 
the plants were removed and the roots were cleaned with tap water. Part 
of the roots collected were stained (as we described below) to measure 
the initial percentages of root colonization. Then, 1 g (fresh weight) of each 
root was planted in pots with 1 kg of sieved soil (10 pots per treatment). The 
experiment was carried out for 4 months, during the growing season (De-
cember 2018–April 2019, austral summer-autumn). All the treatments were 
irrigated daily and received the same amount of water so that the factor of 
soil moisture was avoided and only soil nutrient content was considered. 
The daily temperature ranged from 9.0°C to 27.2°C.

At the end of the experiment, aerial parts of P. anserina were dried at 
60°C for 48 h and weighed to quantify growth (biomass). After this, aerial 
parts of P. anserina were used to measure the final nutrient content. The 
remaining roots were preserved in ethanol 50% for further analysis of AMF 
and DSF colonization.

Soil and plant analyses

A fraction of the sediments (without plant fragments, such as leaves or 
roots) was wet-weighed (WW) and dried at 105°C for 48 h to obtain the dry 
weight (DW). Soil moisture (M) was calculated as the difference between 
WW and DW and expressed as the percentage of soil DW. Then, each 
fraction was combusted at 550°C for 1.5 h to calculate organic matter (OM) 
as the difference between DW and ash.

For total soil carbon (C), nitrogen (N) and phosphorus (P) content, 
sieved samples were dried at 60°C. Carbon and N concentrations were 

TA B L E  1   Location and relevant characteristics of the five studied wetlands, taken from Cuassolo and Diaz-Villanueva (2019).

Wetland Llao-Llao Fantasma Serena Teleferico Bernal

Location 41°03′ S–71°33′ W 41°05′ S–71°26′ W 41°06′ S–77°26′ W 41°07′ S–71°22′ W 41°08′ S–71°10′ W

Wetland area (ha) 2.2 1.1 17.8 0.4 1.5

Potentilla anserina 
coverage (%)

5 47 8 3 9

Hydroperiod (months) 6–8 5–7 5–6 5–7 4–6

Surrounding biome Nothofagus pumilio 
forest

Mix forest Mix forest Mix forest Steppe

Land use None Peri urban Peri urban Urban Recreation
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measured with a CN analyser (Thermo Finnigan Flash EA 1112). Total 
soil P was measured after combustion at 550°C for 1.5 h, followed by 
the ascorbate-reduced molybdenum method (APHA,  2005). Avail-
able P for plants (extractable P) was measured with the Olsen method 
(Sims, 2000). Soluble C and N were measured in soil leachates. For this, 
30 g of soil from each site was mixed with 150 mL of nano-pure water and 
agitated on a shaker table for 1 h at 200 rev/min for 48 h at 4°C (Gabor 
et al., 2015). The obtained solution was filtered through a pre-combusted 
GF/F filter (0.7 μm pore size). Dissolved organic carbon (DOC) and total 
dissolved N (TDN) were measured using a carbon analyser (TOC–VCS 
Shimadzu).

To quantify tissue nutrient content (C, N, and P) of aerial parts and roots 
of P. anserina, the parts were dried at 60°C for 48 h and crushed to pow-
der in a clean mortar. Carbon and N contents were measured using a CN 
analyser (Thermo Finnigan Flash EA 1112). Phosphorus content was mea-
sured after the combustion of plant material at 450°C for 1 h, followed by 
the ascorbate-reduced molybdenum method (APHA,  2005). Molar C:N, 
C:P, and N:P ratios were calculated based on these results. We compared 
C:N:P ratios of aerial parts after 4 months of growth.

Fungal analysis

The roots for fungal colonization analysis, both from the field and from 
the experiment, were cleared in KOH 10% (w/v), acidified with HCl 5% 
(v/v) and stained with trypan blue (Brundrett et al.,  1994). They were 
then cut into 1 cm pieces and placed on slides. Typical structures of AMF 
colonization (hyphae, arbuscules and vesicles) and DSF (dark septate 
hyphae) were quantified according to their presence-absence at 90 
fields using a direct microscope Olympus BX50 at 400×. Root segments 
were analysed according to the gridline-intersect method at 25× mag-
nification (Giovannetti & Mosse, 1980). We quantified root colonization 
(presence-absence) in a random set of 10 plants per site and in all the 
treatments where the plants grew. Additionally, when functional struc-
tures of AMF (vesicles and arbuscules) were present, they were counted 
and expressed as the mean number of structures in 30 fields. As vesi-
cles were many, they were classified in ranges (1: 1–25; 2: 25–50; 3: 
50–75; 4: 75–100).

Statistical analysis

A principal components analysis (PCA) was performed to associate 
sites with environmental variables (organic matter, moisture, total C, 
N, and P, extractable C, N, and P) using the FactoMiner package (Lê 
et al., 2008) and also factoextra (Kassambara & Mundt, 2021). Nutrient 
concentration and endophytic fungi colonization among the treatments 
were compared using One-Way ANOVA. Potentilla anserina growth was 
compared among sites with an ANOVA on Ranks, due to the lack of nor-
mality in the distribution of data. Changes in endophytic fungi coloniza-
tion (final time vs. initial colonization) in the experiment were compared 
with ANOVA. The models were fitted using the “gls” function from pack-
age “nlme” (Pinheiro et al., 2022). Multiple post-hoc comparisons with 
Bonferroni as the P-adjustment method were assessed with the function 
“emmeans” from the “emmeans” package (Lenth, 2022). Qualitative cor-
relograms for the experiment were performed from the ggplot2 package 
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(Wickham, 2016) and corrplot (Wei & Simko, 2021) from R version 4.2.3 
(2022-03-10).

RESULTS

Environmental gradient and endophytic fungi field 
colonization

The wetlands differed in some of the environmental characteristics 
(Table 2). There was a significant gradient in soil moisture that coincided 
with the position in the longitudinal gradient (West–East). This distribution 
of sites was reflected in the PCA (89.7% explained variance), with Llao 
Llao, Fantasma, and Serena positively associated with PC1 (58.6% of ex-
plained variance), Teleferico to the negative values, and Bernal, the most 
eastwards wetland, the most negatively associated with PC1 (Figure 1). 
This distribution was explained not only by moisture but also by total N, C 
and OM. The PC2 (31.0% of explained variance) segregated sites accord-
ing to extractable N (positively associated) and extractable P (negatively 
associated).

We confirmed the presence of AMF (Figure 2a) in all the roots examined, 
and DSF (Figure 2b) were present in all the sites except in Teleferico. In all 
the samples AMF were more abundant (intra-radical hyphae colonization 
>90%) than DSF (colonization <60%; Table 3).

AMF colonization (hyphae) was similar in all the sites (Table  3), and 
therefore not related to any of the environmental variables (Table 4). How-
ever, arbuscules and vesicles differed according to the site (Table 3). While 
arbuscles were only less abundant in Bernal, vesicles were positively re-
lated to total soil C, N, and moisture, though with low correlation coeffi-
cients (Figure 3, Table 4). The DSF colonization also differed among sites 
(Table 3) and was positively related to OM, extractable C, N, and P and 
negatively correlated to total soil P, with stronger coefficients (Figure  3, 
Table 4).

Potentilla anserina experimental colonization, nutrient 
contents, and biomass

The pattern of colonization at the end of the experiment was similar to 
that in the field: the abundance of AMF was higher than DSF (Figure 4) 
and there was a negative correlation between them (Table 5, Figure 5). 
However, the low adjustment indicates that this result should be carefully 
interpreted. Although initial roots were already colonized by AMF and DSF, 
after 4 months of growth in the different soils, AMF and DSF colonization 
decreased in some treatments. In the case of AMF, they decreased in all 
treatments except in Fantasma (from where the roots were extracted) and 
Teleferico, while DSF colonization significantly decreased in Serena and 
Bernal (Table 5, Figure 4).

Regarding nutrient content in plants, both soil N and P were positively 
related to aerial N:P (Figure 5). However, AMF colonization was not related 
to plant nutrient content, while DSF colonization was negatively related to 
aerial N and P, and positively related to C:P (Figure 5).

After 4 months of the experiment, P. anserina grew similarly in all the 
treatments (Table  6); even in control (perlite), plants reached the same 
biomass as in the other treatments (ANOVA on Ranks, F = 5.79, p = 0.98), 
indicating that P. anserina growth was independent of nutrient content in 
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8  |      CUASSOLO and DIAZ-VILLANUEVA

soils. Biomass was not related to AMF colonization (Figure 6a); however, a 
positive correlation was observed with DSF colonization (Figure 6b).

DISCUSSION

Our results showed that both AMF and DSF colonized the roots of P. an-
serina but responded differently to soil characteristics. Our first hypoth-
esis was not confirmed for AMF, since AMF colonization was always high 
(~90%), independently of soil characteristics, but it was confirmed for DSF, 
which was positively related to soil OM and negatively related to total soil P. 
The presence of AMF in the roots of wetland plants is common (Cuassolo 

F I G U R E  1   Ordination plot resulting from principal component analysis (PCA) for the 
five study sites (L: Llao-Llao, F: Fantasma, S: Serena, T: Teleferico, B: Bernal) based on 
environmental variables. The vectors correspond to soil characteristics (eC, eP, and eN, 
extractable Carbon, Posphorus, and Nitrogen; M, moisture; OM, organic matter; TN, total 
nitrogen; TP, total phosphorus).

F I G U R E  2   Microscope photograph of typical morphological structures of arbuscular 
mycorrhizal fungi (AMF) and dark septate fungi (DSF) in Potentilla anserina roots. (a): 
hyphae (h), vesicles (v) and arbuscules (a) of AMF; (b): melanized and septate hyphae (s: 
septum) and conidium (c) of DSF.
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      |  9FUNGI COLONIZATION IN AN INVASIVE WETLAND PLANT

et al.,  2012; Hu et al.,  2020; Li et al.,  2010; Marins & Carrenho,  2017; 
Ramirez-Viga et al., 2018; Wang et al., 2018), although the percentage of 
colonization may be low (<25%; Wang et al., 2018). Moreover, fungal colo-
nization in wetlands had been assumed as unimportant before, since an-
oxic sediments were considered likely to result in the exclusion of fungal 
symbionts (Daleo et al., 2008). However, in our field results and a previous 
study (Cuassolo et al., 2012), root colonization of P. anserina by the AMF 
was high (80%–90% approx). One reason for this may be that P. anserina 
grows in temporary environments during the dry period (Cuassolo & Diaz-
Villanueva, 2022) becoming senescent while it remains underwater (Cuas-
solo et al., 2012). The occurrence of AMF was found negatively correlated 
with water depth and duration of the flooding period (Dolinar et al., 2016; 
Fusconi & Mucciarelli, 2018; Gaberščik et al., 2017). Thus, P. anserina life 
trait (growing during the dry period) might confer the capability of bearing 
high AMF abundance.

However, although DSF was found as the dominant group in some spe-
cies (Cuassolo et al.,  2012; de Marins et al.,  2009; Santillán-Manjarrez 
et al.,  2019), they are usually less abundant than AMF (Bueno de Mes-
quita et al., 2018; Seerangan & Thangavelu, 2014), as confirmed by our 
field study and experiment. However, the role of DSF in plant fitness is 
poorly understood. Bueno de Mesquita et al.  (2018) suggested a role in 
mineralizing inorganic N, but the interactions between DSF and AMF re-
main uncertain. While some authors found positive interactions among 
them (Ranelli et al., 2015; Scervino et al., 2009; Thangavelu & Raji, 2016), 

TA B L E  3   Field colonization in each wetland of both types of endomycorrhiza (AMF and 
DSF) and structures of AMF (arbuscules and vesicles; Mean ± standard error).

AMF Arbuscules Vesicles DSF

Llao-Llao 96.6 ± 6.7 3.1 ± 2.2b 1.5 ± 0.3a 15.0 ± 8.8b

Fantasma 97.3 ± 4.3 10.8 ± 5.9ab 1.1 ± 0.1ab 23.9 ± 7.1b

Serena 92.9 ± 6.7 15.2 ± 1.6a 0.6 ± 0.3b 57.8 ± 10.6a

Teleferico 97.8 ± 3.8 8.1 ± 5.2ab 0.8 ± 0.1b 0.0 ± 0b

Bernal 98.9 ± 1.9 0.6 ± 0.1b 0.6 ± 0.1b 4.4 ± 2.2b

p value 0.67 0.025 0.001 0.002

F value 0.58 4.72 9.97 7.86

Note: Letters upper cases indicate significant differences. Bold values emphasize p values < 0.05.

TA B L E  4   Results of the Pearson correlation analysis between environmental variables 
and biological variables (arbuscular mycorrhizal colonization, arbuscules and vesicles, and 
dark septate fungal colonization) in the field study.

AMF Arbuscules Vesicles DSF

r p r p r p r p

Total C −0.122 0.628 −0.100 0.692 0.590 0.010 0.205 0.415

Total N −0.116 0.647 −0.048 0.850 0.532 0.023 0.214 0.395

Total P 0.315 0.203 −0.133 0.600 0.133 0.599 −0.782 <0.001

ext-C 0.084 0.739 −0.295 0.234 −0.158 0.531 0.800 0.001

ext-N −0.226 0.368 −0.151 0.550 −0.245 0.327 0.520 0.027

ext-P 0.147 0.561 0.292 0.240 0.021 0.933 0.040 0.880

OM −0.270 0.279 −0.100 0.693 0.385 0.114 0.571 0.013

Moisture −0.139 0.582 −0.175 0.487 0.661 0.003 0.194 0.441

Bold values emphasize r and p values < 0.05.
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10  |      CUASSOLO and DIAZ-VILLANUEVA

others found that AMF and DSF responded differently to the same environ-
mental factors (Bueno de Mesquita et al., 2018; Gooden et al., 2019; Huo 
et al., 2021; Jones & French, 2021). The different patterns of colonization 
may be attributed to the fact that AMF are obligate symbionts. Although 

F I G U R E  3   Relationships between the frequency of arbuscular mycorrhizal fungi (AMF) vesicles (above panels) and dark septate fungi 
colonization (below panels) and correlated environmental variables.

F I G U R E  4   Initial and final experimental colonization percentages of each type of 
symbiont fungi (arbuscular mycorrhizal fungi [AMF] and dark septate fungi [DSF]), in the 
six treatments. References: L: Llao-Llao, F: Fantasma, S: Bahía Serena, T: Teleferico, B: 
Bernal. The (*) mean significant differences (p < 0.05). Medians and standard deviations 
are shown.
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      |  11FUNGI COLONIZATION IN AN INVASIVE WETLAND PLANT

the extraradical mycelium may develop well in soil, AMF usually respond 
to plant species more than to environmental variables (Ranelli et al., 2015). 
Our results would suggest that DSF seem to be more dependent on envi-
ronmental variables. In fact, in our study, DSF was positively related to soil 
OM while AMF was not, suggesting that DSF may be more dependent on 
soil OM and AMF on plant sources, at least in the range of OM values found 
in our sites. In consequence, the results obtained up to now indicated that 
more research is needed to clarify the ecological interaction between these 
symbionts. As most research focuses on the effects of AMF on plants, the 
role of DSF still needs more investigation (Albornoz et al., 2022) as well 
as the role of these types of mycorrhizae across terrestrial and aquatic 
environments.

The relations between fungi and soil nutrients were not consistent be-
tween the field survey and the experiment. This could be due, on one hand, 

TA B L E  5   Colonization of both types of endomycorrhiza (AMF and DSF) and structures 
of AMF (arbuscules and vesicles) in the growth experiment, in the five treatments, and in 
control (perlite) after 4 months of growth (tf; Mean ± standard error), and statistical results 
(ANOVA and ANOVA on ranks).

Treatments AMF Arbuscules Vesicles DSF

Llao-Llao 47.6 ± 9.6a 0.9 ± 0.4 0.3 ± 0.2 25.7 ± 7.4a

Fantasma 73.2 ± 11.9ab 3.1 ± 2.1 0.3 ± 0.1 15.9 ± 5.1ab

Serena 74.9 ± 16.6ab 2.5 ± 1.5 0.4 ± 0.2 2.2 ± 1.1b

Teleferico 90 ± 3.6b 1.7 ± 1.0 0.5 ± 0.1 16.7 ± 4.9b

Bernal 90.6 ± 2.5b 4.2 ± 0.9 0.7 ± 0.1 4.9 ± 1.5b

Perlite 65.4 ± 9.4ab 2.5 ± 1.7 0.5 ± 0.2 14.8 ± 3.8b

p value 0.003 0.17 0.21 0.004

F/H value F = 4.67 H = 7.61 H = 7.10 F = 4.37

Note: Letters upper cases indicate significant differences. Bold values emphasize p values < 0.05.

F I G U R E  5   Qualitative correlograms with experimental fungi colonization, biomass 
production, aerial nutrient content, and soil nutrient content. The size of the circles and 
colour scale portray each correlation coefficient; 1 denotes a perfect positive correlation 
and −1 is a perfect negative correlation. All correlation coefficients with a p-value >0.05 are 
white boxes (non-significant).
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12  |      CUASSOLO and DIAZ-VILLANUEVA

to differences in environmental conditions between the field and the ex-
periment; for example, soil moisture was similar in all treatments in the 
experiment, while in the field there was a significant gradient of moisture. 
The moisture gradient (from 32% to 74%) in the field may have had a crucial 
impact on the role of AMF in plant development, though there were no dif-
ferences in AMF root colonization. Recent studies demonstrated that AMF 
can benefit plant growth and phosphorus uptake mostly under low water 
availability (Frew, 2023; Hu et al., 2020; Ramirez-Viga et al., 2018). On the 
other hand, all treatments in the experiment began from roots taken from 
only one place, to assume that the initial inoculum was similar. The sym-
patric combination of roots and soil resulted in better growth (in Fantasma), 
which coincided with previous results (Remke et al., 2021), in which the 
authors suggested that sympatric pairs (plants-AMF) optimize benefits and 
minimize the costs of the symbioses.

Also, the experiment allowed testing the effect of AMF and DSF on nu-
trient acquisition and plant growth in soils with different nutrient content. In 
this regard, we also rejected the second hypothesis of higher nutrient ac-
quisition in plants with higher AMF and DSF. We found no relation between 

TA B L E  6   Aerial biomass of Potentilla anserina in the five soil treatments and perlite 
(control) and molar nutrient ratios (C:N, C:P and N:P) of aerial parts after 4 months of 
growth.

Biomass (g) C:N C:P N:P

Llao-Llao 0.63 ± 0.43 30.0 ± 4.2ab 667 ± 49.5a 27.7 ± 2.2 ab

Fantasma 0.51 ± 0.19 29.0 ± 6.8 ab 406.7 ± 27.7b 15.3 ± 3.4 b

Serena 0.48 ± 0.25 21.3 ± 2.7 b 538.3 ± 67.7ab 25.3 ± 0.9 a

Teleferico 0.80 ± 0.62 29.0 ± 2.5 ab 662.7 ± 81.9a 23.0 ± 0.6 ab

Bernal 0.77 ± 0.17 17.0 ± 1.5 b 345.0 ± 46.6b 20.0 ± 1.5 ab

Perlite 0.55 ± 0.16 39.0 ± 3.6 a 666.7 ± 123.5a 17.0 ± 2.5 ab

F value 5.79 6.14 3.85 3.39

p value 0.98 0.007 0.026 0.039

Note: (Mean ± standard error), and results of the One-Way ANOVA. Letters upper cases indicate 
significant differences. Bold values emphasize p values < 0.05.

F I G U R E  6   Biomass production as a proxy of growth related to arbuscular mycorrhizal fungi colonization (a) and dark septate fungi 
[DSF] colonization (b).
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      |  13FUNGI COLONIZATION IN AN INVASIVE WETLAND PLANT

AMF and plant nutrients, and even higher aerial N and P content in plants 
with lower DSF colonization (Figure 6). This result could reflect that when 
the host plant can obtain nutrients from the soil, DSF colonize less (Daleo 
et al., 2008; Kiers et al., 2011; Olsson & Tyler, 2003).

The similar growth of P. anserina in the treatments, even in the control 
treatment, suggested a high nutrient reserve allocated in the roots, which 
was used for growth. In a previous study, Cuassolo et al.  (2012) found 
that when the wetland is flooded, root C:P decreases, and when it dries 
out, P. anserina begins to sprout and the P stored in the roots is sent to 
the new shoots. This strategy gives this species the advantage of being 
P enriched when the growing season begins. Many studies demonstrated 
that plants colonized by AMF grow larger than uncolonized ones (Hoek-
sema et al., 2010; Sudová, 2009; Treseder, 2013); the lack of difference 
in plant growth from soil treatments in our experiment could be attributed 
to the fact that we did not compare the growth of plants with and without 
mycorrhizae. The majority of vascular plants had high AMF colonization 
(72%; Brundrett, 2004), and host plants can support high colonization only 
if they benefit either in growth or in nutrient acquisition (Daleo et al., 2008). 
So, the high root colonization by AMF would indicate that P. anserina ben-
efited from the mutualistic interaction. Besides, DSF was positively related 
to growth, which may indicate that the presence of this endophyte, though 
less abundant than AMF, confer the plant with some benefit to grow, or that 
higher plant growth benefits DSF colonization.

The colonization of AMF and DSF in the roots of a wetland plant is differ-
ently related to abiotic factors. While AMF was much more abundant than 
DSF in P. anserina roots, the role of DSF might be more critical in plant 
growth and nutrient acquisition. However, the interactions between these 
endophytic fungi still need more investigation. Further studies should also 
address the importance of these two groups of fungi in the invasion suc-
cess of P. anserina in Patagonian wetlands, as the presence of endophytes 
may help to explain the wide distribution of this exotic species.
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